1. Startup Deal Flow Analyzer
Automates screening of startup pitches
Problem: Manual screening wastes time
Data Dictionary
| Field | Type | Description | Example |
| record_id | INT PK | Unique record id | 1001 |
| startup_id | INT FK | Link to Startups.master | 101 |
| pitch_doc_url | VARCHAR | Location of pitch deck | /docs/pitch_101.pdf |
| deal_flow_score | FLOAT | AI score (0-100) of pitch quality | 82.5 |
| key_topics | TEXT | Extracted topics/keywords | "fintech, payments" |
| expected_input | JSON | Inputs used (deck, demo link, metrics) | '{"revenue":...}' |
| algorithm | VARCHAR | AI model used | "NLP Document Classifier" |
| status | ENUM | Processed / Pending / Error | Processed |
| last_run | DATETIME | Last scoring time | 2025-11-05 10:12 |
| remarks | TEXT | Auditor notes | "Good TAM evidence" |
Mock Dataset
| record_id | startup_id | deal_flow_score | key_topics | algorithm | status |
| 1001 | 101 | 82.5 | fintech;payments;KYC | NLP-Doc-1 | Processed |
| 1002 | 102 | 67.2 | agritech;supply-chain | NLP-Doc-1 | Processed |
| 1003 | 103 | 45.8 | edtech;retention | NLP-Doc-1 | Processed |
| 1004 | 104 | 90.1 | cleantech;solar | NLP-Doc-1 | Processed |
2. Investor–Startup Matchmaking
Matches startups with right investors
Problem: Misaligned funding opportunities
Data Dictionary
| Field | Type | Description | Example |
| record_id | INT PK | Unique match id | 2001 |
| startup_id | INT | Startup | 101 |
| investor_id | INT | Investor | 501 |
| match_score | FLOAT | Compatibility score 0-100 | 87.3 |
| stage_fit | VARCHAR | Seed/Series A/etc. | Series A |
| sector_overlap | FLOAT | Sector similarity 0-1 | 0.84 |
| algorithm | VARCHAR | Recommender model | "MatrixFactor" |
| notes | TEXT | Advisor remarks | "Lead interest" |
Mock Dataset
| record_id | startup_id | investor_id | match_score | stage_fit |
| 2001 | 101 | 501 | 87.3 | Series A |
| 2002 | 102 | 502 | 78.0 | Seed |
| 2003 | 103 | 503 | 65.5 | Pre-Seed |
| 2004 | 104 | 504 | 92.1 | Series B |
3. AI Due Diligence Assistant
Automates startup background checks
Problem: Tedious manual due diligence
Data Dictionary
| Field | Type | Description | Example |
| record_id | INT | Check id | 3001 |
| startup_id | INT | Target startup | 101 |
| db_checks | JSON | Results from registry, litigation, tax | '{"litigation":false}' |
| score_completeness | FLOAT | Data completeness 0-100 | 92.0 |
| fraud_flags | INT | Number of flags | 0 |
| report_url | VARCHAR | DD report | /reports/dd_3001.pdf |
| analyst | VARCHAR | Human reviewer | "R. Sharma" |
Mock Dataset
| record_id | startup_id | score_completeness | fraud_flags | report_url |
| 3001 | 101 | 92.0 | 0 | /reports/dd_3001.pdf |
| 3002 | 103 | 74.5 | 1 | /reports/dd_3002.pdf |
| 3003 | 104 | 88.9 | 0 | /reports/dd_3003.pdf |
| 3004 | 105 | 55.2 | 3 | /reports/dd_3004.pdf |
4. Family Office Impact Tracker
Tracks investments & social impact
Problem: No structured way to measure impact
Data Dictionary
| Field | Type | Description | Example |
| record_id | INT | Impact record id | 4001 |
| startup_id | INT | Recipient startup | 101 |
| investor_id | INT | Family office id | 701 |
| sdg_aligned | VARCHAR | Primary SDG tag | SDG7 |
| impact_score | FLOAT | Impact metric 0-100 | 75.4 |
| measurement_period | VARCHAR | Quarter/Year | Q3-2025 |
| evidence_docs | TEXT | Links to evidence | "/evidence/..." |
Mock Dataset
| record_id | startup_id | investor_id | sdg_aligned | impact_score |
| 4001 | 110 | 701 | SDG7 | 75.4 |
| 4002 | 115 | 702 | SDG3 | 82.0 |
| 4003 | 120 | 703 | SDG6 | 64.5 |
| 4004 | 101 | 701 | SDG9 | 71.2 |
5. Angel Network Dashboard
Unified view of deals & returns
Problem: Fragmented systems
Data Dictionary
| Field | Type | Description | Example |
| dashboard_id | INT | Dashboard record | 5001 |
| syndicate_id | INT | Angel group | 801 |
| deals_count | INT | Total deals | 18 |
| portfolio_return | FLOAT | IRR or ROI | 24.5 |
| exposure_sector | TEXT | Sector breakdown | "fintech:40%,health:30%" |
| last_refresh | DATETIME | Refresh timestamp | 2025-11-04 09:22 |
Mock Dataset
| dashboard_id | syndicate_id | deals_count | portfolio_return |
| 5001 | 801 | 18 | 24.5 |
| 5002 | 802 | 22 | 18.2 |
| 5003 | 803 | 12 | 30.1 |
| 5004 | 804 | 9 | 12.0 |
6. Startup Valuation Predictor
Predicts fair valuation of startups
Problem: Over/undervaluation in funding
Data Dictionary
| Field | Type | Description | Example |
| valuation_id | INT | Valuation record | 6001 |
| startup_id | INT | Startup | 101 |
| predicted_valuation | FLOAT | Predicted valuation (₹ Cr) | 18.5 |
| method | VARCHAR | Model/approach | "Regression-ensemble" |
| confidence | FLOAT | Confidence % | 88.6 |
| features_used | TEXT | Features | "rev, growth, churn" |
| last_run | DATETIME | Run timestamp | 2025-11-03 11:00 |
Mock Dataset
| valuation_id | startup_id | predicted_valuation | confidence |
| 6001 | 101 | 18.5 | 88.6 |
| 6002 | 102 | 7.2 | 76.4 |
| 6003 | 103 | 3.1 | 62.1 |
| 6004 | 104 | 45.0 | 92.0 |
7. Fraud Detection Engine
Detects fake startups & scams
Problem: Fake data in funding
Data Dictionary
| Field | Type | Description | Example |
| fraud_id | INT | Fraud event id | 7001 |
| startup_id | INT | Startup analyzed | 110 |
| anomaly_score | FLOAT | 0-100 anomaly score | 92.0 |
| graph_flags | INT | Number of suspicious links in graph | 3 |
| evidence | TEXT | Summary of anomalies | "revenue mismatch" |
| detected_by | VARCHAR | Model name | "PyTorch-AnomV1" |
| action | VARCHAR | Suggested action | "Escalate to DD" |
Mock Dataset
| fraud_id | startup_id | anomaly_score | graph_flags | action |
| 7001 | 201 | 92 | 4 | Escalate |
| 7002 | 202 | 65 | 1 | Monitor |
| 7003 | 203 | 28 | 0 | No action |
| 7004 | 204 | 80 | 2 | Deep Audit |
8. AI-powered Term Sheet Generator
Auto-generates legal investment docs
Problem: Legal delays
Data Dictionary
| Field | Type | Description | Example |
| ts_id | INT | Term sheet id | 8001 |
| deal_id | INT | Linked deal | 4001 |
| ts_version | INT | Version number | 1 |
| clauses | TEXT | Generated clauses | "vesting:4yr..." |
| generated_by | VARCHAR | LLM name | "GPT-TermGen-1" |
| signed_status | ENUM | Pending/Partially/Complete | Pending |
Mock Dataset
| ts_id | deal_id | ts_version | generated_by | signed_status |
| 8001 | 4001 | 1 | GPT-TermGen-1 | Pending |
| 8002 | 4002 | 1 | GPT-TermGen-1 | Complete |
| 8003 | 4003 | 2 | GPT-TermGen-2 | Pending |
| 8004 | 4004 | 1 | GPT-TermGen-1 | Partially |
9. Investor Portfolio Optimizer
Recommends portfolio balancing
Problem: Poor diversification
Data Dictionary
| Field | Type | Description | Example |
| opt_id | INT | Optimizer run id | 9001 |
| investor_id | INT | Investor | 501 |
| allocation_suggestion | JSON | Suggested allocations by startup | '{"101":45,"102":30}' |
| expected_return | FLOAT | Projected ROI% | 18.2 |
| risk_tolerance | VARCHAR | Low/Med/High | Medium |
| solver | VARCHAR | Algorithm used | "OR-Tools-LP" |
Mock Dataset
| opt_id | investor_id | allocation_suggestion | expected_return |
| 9001 | 501 | {"101":45,"102":30,"103":25} | 18.2 |
| 9002 | 502 | {"104":60,"105":40} | 14.5 |
| 9003 | 503 | {"106":20,"107":80} | 22.1 |
| 9004 | 504 | {"108":50,"109":50} | 16.0 |
10. AI News Sentiment Tracker
Tracks market & startup news
Problem: Noise in news data
Data Dictionary
| Field | Type | Description | Example |
| news_id | INT | Article id | 10001 |
| startup_id | INT | Related startup | 101 |
| source | VARCHAR | News source | Reuters |
| publish_date | DATE | Article date | 2025-11-02 |
| sentiment_score | FLOAT | -1 to +1 | 0.45 |
| topics | TEXT | Extracted topics | "funding,partnership" |
| summary | TEXT | Auto summary | "Raised $5M..." |
Mock Dataset
| news_id | startup_id | source | sentiment_score | summary |
| 10001 | 101 | Reuters | 0.45 | Raised $5M seed |
| 10002 | 102 | TechCrunch | -0.12 | Layoffs announced |
| 10003 | 103 | EconomicTimes | 0.25 | New partnership |
| 10004 | 104 | LocalNews | 0.00 | Neutral coverage |
11. MIS Deal Flow Heatmap
Geographic startup deal mapping
Problem: Lack of visibility by region
Data Dictionary
| Field | Type | Description | Example |
| heatmap_id | INT | Record id | 11001 |
| region | VARCHAR | Region name | Mumbai |
| deals_count | INT | No. deals | 12 |
| avg_deal_size | FLOAT | Avg amount (₹ Cr) | 3.2 |
| geo_coords | VARCHAR | lat,long | "18.96,72.82" |
| last_update | DATETIME | Refresh | 2025-11-05 |
Mock Dataset
| heatmap_id | region | deals_count | avg_deal_size |
| 11001 | Mumbai | 12 | 3.2 |
| 11002 | Bengaluru | 22 | 5.1 |
| 11003 | Delhi NCR | 18 | 4.0 |
| 11004 | Chennai | 6 | 1.2 |
12. Social Impact Scorecard
Measures startup’s ESG alignment
Problem: No quantifiable metrics
Data Dictionary
| Field | Type | Description | Example |
| esg_id | INT | ESG score id | 12001 |
| startup_id | INT | Startup | 101 |
| environment_score | FLOAT | 0-100 | 78.2 |
| social_score | FLOAT | 0-100 | 69.4 |
| governance_score | FLOAT | 0-100 | 72.0 |
| composite_esg | FLOAT | Weighted | 73.2 |
| evidence_docs | TEXT | Proof | "/evidence/esg_12001.pdf" |
Mock Dataset
| esg_id | startup_id | composite_esg | evidence_docs |
| 12001 | 101 | 73.2 | /evidence/esg_12001.pdf |
| 12002 | 115 | 81.0 | /evidence/esg_12002.pdf |
| 12003 | 130 | 55.1 | /evidence/esg_12003.pdf |
| 12004 | 140 | 66.4 | /evidence/esg_12004.pdf |
13. Founders Mental Health Monitor
AI-based well-being support
Problem: Founder burnout
Data Dictionary
| Field | Type | Description | Example |
| mh_id | INT | Record id | 13001 |
| founder_id | INT | Founder | 901 |
| stress_score | FLOAT | 0-100 | 72.5 |
| mood_trend | TEXT | Weekly mood summary | "anxiety trending" |
| intervention | VARCHAR | Suggested action | Coaching |
| last_checkin | DATE | Last assessment | 2025-11-01 |
Mock Dataset
| mh_id | founder_id | stress_score | intervention |
| 13001 | 901 | 72.5 | Coaching |
| 13002 | 902 | 45.2 | Wellness plan |
| 13003 | 903 | 28.1 | Monitoring |
| 13004 | 904 | 85.4 | Immediate help |
14. Startup Exit Predictor
Predicts likelihood of startup exits
Problem: Investors unsure of ROI
Data Dictionary
| Field | Type | Description | Example |
| exit_id | INT | Prediction id | 14001 |
| startup_id | INT | Startup | 101 |
| exit_prob | FLOAT | 0-1 probability | 0.28 |
| predicted_horizon_months | INT | Months to exit | 36 |
| model_used | VARCHAR | Survival/ML | Survival-Prophet |
| confidence | FLOAT | Confidence % | 78.2 |
Mock Dataset
| exit_id | startup_id | exit_prob | predicted_horizon_months |
| 14001 | 101 | 0.28 | 36 |
| 14002 | 102 | 0.12 | 60 |
| 14003 | 103 | 0.45 | 18 |
| 14004 | 104 | 0.05 | 120 |
15. AI Market Sizing Tool
Automates TAM, SAM, SOM calculations
Problem: Market sizing guesswork
Data Dictionary
| Field | Type | Description | Example |
| market_id | INT | Record id | 15001 |
| sector | VARCHAR | Sector | Fintech |
| TAM | FLOAT | Total addressable market | 12000 |
| SAM | FLOAT | Serviceable addressable | 3200 |
| SOM | FLOAT | Share of market | 300 |
| methodology | TEXT | Sources & assumptions | "Gov data, analyst" |
Mock Dataset
| market_id | sector | TAM | SAM | SOM |
| 15001 | Fintech | 12000 | 3200 | 300 |
| 15002 | HealthTech | 8000 | 1500 | 120 |
| 15003 | EduTech | 5000 | 900 | 70 |
| 15004 | CleanTech | 20000 | 4500 | 500 |
16. Family Office Co-investment Finder
Identifies co-investment opportunities
Problem: Families invest in silos
Data Dictionary
| Field | Type | Description | Example |
| match_id | INT | Co-invest match id | 16001 |
| family_office_id | INT | Family office | 701 |
| potential_partner_id | INT | Other investor | 702 |
| overlap_score | FLOAT | 0-100 fit score | 82.1 |
| preferred_sectors | TEXT | Sector match | "agritech;cleantech" |
Mock Dataset
| match_id | family_office_id | potential_partner_id | overlap_score |
| 16001 | 701 | 702 | 82.1 |
| 16002 | 703 | 704 | 71.5 |
| 16003 | 705 | 706 | 65.0 |
| 16004 | 707 | 708 | 88.2 |
17. AI Patent Scanner
Validates startup IP
Problem: Duplicate/invalid patents
Data Dictionary
| Field | Type | Description | Example |
| patent_id | INT | Patent record | 17001 |
| startup_id | INT | Owner | 101 |
| patent_text | TEXT | Claim text | "An apparatus..." |
| similarity_score | FLOAT | Similarity to existing patents | 0.82 |
| status | ENUM | Unique/Duplicate/Review | Review |
| matched_patents | TEXT | Matches found | "US12345;EP6789" |
Mock Dataset
| patent_id | startup_id | similarity_score | status |
| 17001 | 201 | 0.12 | Unique |
| 17002 | 202 | 0.78 | Review |
| 17003 | 203 | 0.95 | Duplicate |
| 17004 | 204 | 0.34 | Unique |
18. Startup Risk Heatmap
Dynamic risk analysis
Problem: Risk often hidden
Data Dictionary
| Field | Type | Description | Example |
| riskmap_id | INT | Record id | 18001 |
| startup_id | INT | Startup | 101 |
| financial_risk | FLOAT | 0-100 | 34 |
| operational_risk | FLOAT | 0-100 | 45 |
| composite_risk | FLOAT | Weighted index | 38.5 |
| heatmap_region | VARCHAR | Region | West |
Mock Dataset
| riskmap_id | startup_id | composite_risk | heatmap_region |
| 18001 | 101 | 38.5 | West |
| 18002 | 102 | 55.2 | South |
| 18003 | 103 | 22.1 | North |
| 18004 | 104 | 72.4 | East |
19. AI Fund Allocation Planner
Optimizes fund allocation
Problem: Poor allocation strategies
Data Dictionary
| Field | Type | Description | Example |
| plan_id | INT | Allocation plan id | 19001 |
| investor_id | INT | Investor | 501 |
| total_fund | FLOAT | Total fund (₹ Lakhs) | 20000 |
| allocations | JSON | Allocations per startup | '{"101":4500}' |
| objective | VARCHAR | Max ROI / Min Risk | Max ROI |
| solver | VARCHAR | OR-Tools / custom | OR-Tools |
Mock Dataset
| plan_id | investor_id | total_fund | allocations |
| 19001 | 501 | 20000 | {"101":4500,"102":5500,"103":10000} |
| 19002 | 502 | 10000 | {"104":4000,"105":6000} |
| 19003 | 503 | 5000 | {"106":2500,"107":2500} |
| 19004 | 504 | 15000 | {"108":8000,"109":7000} |
20. Karmic Startup Karma Tracker
Tracks good/bad impact (PRUTL)
Problem: Only profits tracked
Data Dictionary
| Field | Type | Description | Example |
| karma_id | INT | Karma record id | 20001 |
| startup_id | INT | Startup | 101 |
| positive_soul | FLOAT | Positive soul metric (0-100) | 55 |
| negative_soul | FLOAT | Negative soul metric | 12 |
| materialism_score | FLOAT | Materialism composite | 40 |
| karma_index | FLOAT | Composite karma score | 63 |
| notes | TEXT | Ethical remarks | "Supports recycling" |
Mock Dataset
| karma_id | startup_id | karma_index | notes |
| 20001 | 101 | 63 | Supports recycling |
| 20002 | 102 | 42 | High materialism |
| 20003 | 103 | 75 | Community programs |
| 20004 | 104 | 30 | Profit-first |
21. Cyber Risk Monitor for Startups
Tracks startup’s cyber posture
Problem: Investors blind to cyber risk
Data Dictionary
| Field | Type | Description | Example |
| cyber_id | INT | Cyber record id | 21001 |
| startup_id | INT | Startup | 201 |
| threat_score | FLOAT | 0-100 | 56 |
| vuln_count | INT | No. vulnerabilities | 12 |
| compliance_iso27001 | BOOL | ISO 27001 certified | true |
| recommendation | TEXT | Suggested actions | "Enable MFA" |
Mock Dataset
| cyber_id | startup_id | threat_score | vuln_count |
| 21001 | 201 | 56 | 12 |
| 21002 | 202 | 82 | 24 |
| 21003 | 203 | 28 | 3 |
| 21004 | 204 | 41 | 7 |
22. Startup Hiring Analyzer
Predicts hiring needs & gaps
Problem: Mis-hiring by startups
Data Dictionary
| Field | Type | Description | Example |
| hire_id | INT | Record id | 22001 |
| startup_id | INT | Startup | 301 |
| current_headcount | INT | Employees | 23 |
| predicted_optimal | INT | AI recommended headcount | 28 |
| gap | INT | Difference | 5 |
| attrition_risk | FLOAT | % attrition risk | 12.4 |
| recommendation | TEXT | Hiring plan | "Hire 2 DevOps" |
Mock Dataset
| hire_id | startup_id | current_headcount | predicted_optimal | gap |
| 22001 | 301 | 23 | 28 | 5 |
| 22002 | 302 | 12 | 12 | 0 |
| 22003 | 303 | 8 | 14 | 6 |
| 22004 | 304 | 5 | 5 | 0 |
23. Investor Bias Detector
Detects gender/regional bias
Problem: Biased funding
Data Dictionary
| Field | Type | Description | Example |
| bias_id | INT | Bias record id | 23001 |
| investor_id | INT | Investor | 501 |
| metric | VARCHAR | Gender/Region/Sector | Gender |
| bias_score | FLOAT | 0-100 fairness index | 46 |
| explanation | TEXT | Why bias flagged | "Favors metro founders" |
| mitigation | TEXT | Recommended fix | "Blind evaluation" |
Mock Dataset
| bias_id | investor_id | metric | bias_score |
| 23001 | 501 | Gender | 46 |
| 23002 | 502 | Region | 62 |
| 23003 | 503 | Sector | 84 |
| 23004 | 504 | Gender | 71 |
24. AI Pitch Voice Analyzer
Analyzes founder pitch tone
Problem: Subjective judging
Data Dictionary
| Field | Type | Description | Example |
| pitch_id | INT | Record id | 24001 |
| founder_id | INT | Founder | 901 |
| avg_pitch_hz | FLOAT | Average pitch | 215 |
| confidence_score | FLOAT | 0-100 | 89 |
| emotion | VARCHAR | Detected emotion | Calm |
| fairness_score | FLOAT | Bias adjusted score | 92 |
Mock Dataset
| pitch_id | founder_id | avg_pitch_hz | confidence_score | fairness_score |
| 24001 | 901 | 215 | 89 | 92 |
| 24002 | 902 | 140 | 76 | 68 |
| 24003 | 903 | 230 | 59 | 52 |
| 24004 | 904 | 125 | 72 | 64 |
25. AI Startup Growth Path Simulator
Simulates future growth scenarios
Problem: No clarity of projections
Data Dictionary
| Field | Type | Description | Example |
| sim_id | INT | Simulation id | 25001 |
| startup_id | INT | Startup | 101 |
| scenario | VARCHAR | Best/Base/Worst | Base |
| projected_revenue_3yr | FLOAT | ₹ Cr | 27.7 |
| projected_revenue_5yr | FLOAT | ₹ Cr | 58.1 |
| confidence | FLOAT | % | 89 |
Mock Dataset
| sim_id | startup_id | scenario | projected_revenue_3yr | confidence |
| 25001 | 101 | Base | 27.7 | 89 |
| 25002 | 102 | Best | 30.4 | 85 |
| 25003 | 103 | Worst | 15.1 | 74 |
| 25004 | 104 | Base | 14.2 | 69 |
26. AI-Powered Startup Watchlist
Flags startups needing attention
Problem: Post-investment neglect
Data Dictionary
| Field | Type | Description | Example |
| watch_id | INT | Watchlist id | 26001 |
| startup_id | INT | Startup | 201 |
| anomaly_score | FLOAT | 0-1 | 0.83 |
| health_index | FLOAT | % | 62 |
| risk_level | VARCHAR | High/Medium/Low | High |
| justification | TEXT | AI explanation | Rapid cash burn |
Mock Dataset
| watch_id | startup_id | anomaly_score | health_index | risk_level |
| 26001 | 201 | 0.83 | 62 | High |
| 26002 | 202 | 0.55 | 78 | Medium |
| 26003 | 203 | 0.24 | 90 | Low |
| 26004 | 204 | 0.41 | 70 | Medium |
27. SDG Startup Alignment Dashboard
Classifies startups to SDGs
Problem: ESG ignored in funding
Data Dictionary
| Field | Type | Description | Example |
| sdg_id | INT | Record id | 27001 |
| startup_id | INT | Startup | 110 |
| primary_sdg | VARCHAR | Main SDG | SDG7 |
| alignment_score | FLOAT | 0-1 | 0.91 |
| esg_impact_index | FLOAT | % | 88 |
| notes | TEXT | Assessment details | "Solar microgrids" |
Mock Dataset
| sdg_id | startup_id | primary_sdg | alignment_score | esg_impact_index |
| 27001 | 110 | SDG7 | 0.91 | 88 |
| 27002 | 115 | SDG3 | 0.74 | 79 |
| 27003 | 120 | SDG4 | 0.64 | 72 |
| 27004 | 130 | SDG6 | 0.42 | 55 |
28. AI Competitor Landscape Mapper
Maps startup vs competitors
Problem: Founders lack data
Data Dictionary
| Field | Type | Description | Example |
| comp_id | INT | Record id | 28001 |
| startup_id | INT | Startup | 101 |
| competitor | VARCHAR | Competitor name | PayEase |
| overlap_pct | FLOAT | Market overlap % | 80 |
| product_similarity | VARCHAR | High/Medium/Low | High |
| ai_insight | TEXT | Recommendation | "Focus B2B" |
Mock Dataset
| comp_id | startup_id | competitor | overlap_pct | ai_insight |
| 28001 | 101 | PayEase | 80 | Focus B2B micro-payments |
| 28002 | 102 | FarmNet | 65 | Introduce IoT sensors |
| 28003 | 103 | HealthNext | 50 | Enhance explainability |
| 28004 | 104 | GreenHive | 70 | Target EU grants |
29. Startup Gender Diversity Analyzer
Measures diversity in teams
Problem: Diversity under-reported
Data Dictionary
| Field | Type | Description | Example |
| div_id | INT | Record id | 29001 |
| startup_id | INT | Startup | 120 |
| total_employees | INT | Total | 120 |
| male_pct | FLOAT | % male | 70 |
| female_pct | FLOAT | % female | 28 |
| nonbinary_pct | FLOAT | % | 2 |
| diversity_score | FLOAT | 0-10 | 6.4 |
Mock Dataset
| div_id | startup_id | male_pct | female_pct | diversity_score |
| 29001 | 120 | 70 | 28 | 6.4 |
| 29002 | 121 | 60 | 38 | 7.9 |
| 29003 | 122 | 80 | 19 | 5.2 |
| 29004 | 123 | 55 | 43 | 8.8 |
30. Investor Relations Chatbot
Handles FAQs for investors
Problem: Manual queries
Data Dictionary
| Field | Type | Description | Example |
| faq_id | INT | FAQ record | 30001 |
| question | TEXT | Investor question | "Valuation?" |
| answer | TEXT | AI response | "$15M as of Q3 2025" |
| category | VARCHAR | Financial/Resources/etc | Financial |
| usage_count | INT | Times asked | 123 |
| last_updated | DATETIME | Update timestamp | 2025-11-05 |
Mock Dataset
| faq_id | question | answer | category |
| 30001 | What is current valuation? | Our latest valuation is $15M. | Financial |
| 30002 | Who are lead investors? | BluePeak Ventures. | Funding |
| 30003 | View pitch deck? | Investor Portal > Documents | Resources |
| 30004 | Next update date? | Dec 15, 2025 | Scheduling |
31. Startup Carbon Footprint Tracker
Tracks emissions
Problem: No carbon accounting
Data Dictionary
| Field | Type | Description | Example |
| carbon_id | INT | Record id | 31001 |
| site | VARCHAR | Location | Office HQ |
| energy_kwh | FLOAT | Energy used | 320 |
| waste_kg | FLOAT | Waste | 18 |
| vehicle_co2 | FLOAT | Vehicle CO2 (kg) | 56 |
| total_co2 | FLOAT | Total CO2 (kg) | 394 |
| status | VARCHAR | Optimal/Moderate/High | Above Target |
Mock Dataset
| carbon_id | site | energy_kwh | total_co2 | status |
| 31001 | Office HQ | 320 | 394 | Above Target |
| 31002 | Manufacturing | 1240 | 1512 | High |
| 31003 | Remote Office | 180 | 197 | Optimal |
| 31004 | R&D Center | 480 | 577 | Moderate |
32. AI Startup Scalability Analyzer
Measures ability to scale
Problem: Investors miss signals
Data Dictionary
| Field | Type | Description | Example |
| scal_id | INT | Record id | 32001 |
| startup_id | INT | Startup | 401 |
| current_users | INT | User base | 15000 |
| monthly_growth_pct | FLOAT | Monthly growth % | 22 |
| automation_level | FLOAT | % automation | 87 |
| ai_scalability_score | FLOAT | 0-100 | 91 |
| status | VARCHAR | Scale class | Highly Scalable |
Mock Dataset
| scal_id | startup_id | monthly_growth_pct | ai_scalability_score | status |
| 32001 | 401 | 22 | 91 | Highly Scalable |
| 32002 | 402 | 12 | 74 | Moderate |
| 32003 | 403 | 6 | 59 | Needs Optimization |
| 32004 | 404 | 28 | 96 | Excellent |
33. AI-Powered MIS Reporting
Auto-generates MIS reports
Problem: Manual report prep
Data Dictionary
| Field | Type | Description | Example |
| mis_id | INT | MIS record id | 33001 |
| startup_id | INT | Startup | 101 |
| revenue_lacs | FLOAT | Revenue | 120 |
| expense_lacs | FLOAT | Expenses | 80 |
| profit_pct | FLOAT | Profit % | 33 |
| ai_summary | TEXT | Auto-generated summary | "Strong Q3 growth" |
| last_generated | DATETIME | Timestamp | 2025-11-05 |
Mock Dataset
| mis_id | startup_id | revenue_lacs | profit_pct | ai_summary |
| 33001 | 101 | 120 | 33 | Strong Q3 growth |
| 33002 | 102 | 95 | 26 | Stable performance |
| 33003 | 103 | 60 | -8 | Operational losses |
| 33004 | 104 | 200 | 40 | Outstanding quarter |
34. Investor Deal Syndication Manager
Helps manage syndicates
Problem: Coordination is messy
Data Dictionary
| Field | Type | Description | Example |
| synd_id | INT | Syndicate id | 34001 |
| lead_investor | INT | Lead investor id | 801 |
| co_investors | TEXT | List of co-investors | "802,803" |
| deals_managed | INT | No. deals | 18 |
| avg_turnaround_days | INT | Avg days | 9 |
| workflow_index | FLOAT | Efficiency score | 91 |
Mock Dataset
| synd_id | lead_investor | co_investors | deals_managed |
| 34001 | 801 | 802,803,804 | 18 |
| 34002 | 805 | 806,807 | 22 |
| 34003 | 808 | 809 | 15 |
| 34004 | 810 | 811,812 | 12 |
35. AI Liquidity Risk Model
Predicts liquidity crunch
Problem: Investors blindsided
Data Dictionary
| Field | Type | Description | Example |
| liq_id | INT | Record id | 35001 |
| investor_id | INT | Investor | 501 |
| predicted_shortfall | FLOAT | Amount (₹ Lacs) | 500 |
| horizon_months | INT | Months | 6 |
| confidence | FLOAT | % | 82 |
| mitigation | TEXT | Suggested actions | "Increase reserve" |
Mock Dataset
| liq_id | investor_id | predicted_shortfall | horizon_months |
| 35001 | 501 | 500 | 6 |
| 35002 | 502 | 1200 | 3 |
| 35003 | 503 | 200 | 12 |
| 35004 | 504 | 50 | 18 |
36. Startup Financial Integrity Checker
Validates accounting integrity
Problem: Fraudulent accounts
Data Dictionary
| Field | Type | Description | Example |
| int_id | INT | Integrity id | 36001 |
| startup_id | INT | Startup | 201 |
| cashflow_match_pct | FLOAT | % match | 97 |
| anomaly_score | FLOAT | 0-100 | 48 |
| integrity_index | FLOAT | 0-100 | 88 |
| remarks | TEXT | Details | "Round-off manipulations" |
Mock Dataset
| int_id | startup_id | cashflow_match_pct | anomaly_score |
| 36001 | 201 | 97 | 8 |
| 36002 | 202 | 89 | 23 |
| 36003 | 203 | 72 | 52 |
| 36004 | 204 | 95 | 12 |
37. AI Social Media Perception Tracker
Monitors startup buzz
Problem: No real-time tracking
Data Dictionary
| Field | Type | Description | Example |
| sm_id | INT | Record id | 37001 |
| startup_id | INT | Startup | 101 |
| mentions_count | INT | Mentions in window | 320 |
| avg_sentiment | FLOAT | -1..+1 | 0.12 |
| top_sources | TEXT | Source list | "Twitter,LinkedIn" |
| trend_flag | VARCHAR | Up/Down/Stable | Up |
Mock Dataset
| sm_id | startup_id | mentions_count | avg_sentiment |
| 37001 | 101 | 320 | 0.12 |
| 37002 | 102 | 150 | -0.20 |
| 37003 | 103 | 78 | 0.45 |
| 37004 | 104 | 12 | 0.00 |
38. Early Warning System
Flags failing startups early
Problem: Investors shocked
Data Dictionary
| Field | Type | Description | Example |
| ews_id | INT | EWS record id | 38001 |
| startup_id | INT | Startup | 201 |
| risk_score | FLOAT | 0-100 | 70 |
| flag_reason | TEXT | Trigger reason | "cash burn spike" |
| alert_level | VARCHAR | Low/Med/High | High |
| notified | BOOL | Investors notified | true |
Mock Dataset
| ews_id | startup_id | risk_score | alert_level |
| 38001 | 201 | 70 | High |
| 38002 | 202 | 35 | Medium |
| 38003 | 203 | 22 | Low |
| 38004 | 204 | 55 | Medium |
39. AI Grant Mapping Tool
Maps startups to grants
Problem: Startups miss govt. grants
Data Dictionary
| Field | Type | Description | Example |
| grant_map_id | INT | Record id | 39001 |
| startup_id | INT | Startup | 101 |
| grant_id | INT | Grant | 5001 |
| match_score | FLOAT | 0-1 | 0.87 |
| sdg_relevance | VARCHAR | SDG tag | SDG7 |
| apply_url | VARCHAR | Application link | https://gov/grant/5001 |
Mock Dataset
| grant_map_id | startup_id | grant_id | match_score |
| 39001 | 101 | 5001 | 0.87 |
| 39002 | 102 | 5002 | 0.56 |
| 39003 | 103 | 5003 | 0.93 |
| 39004 | 104 | 5004 | 0.42 |
40. AI Investor Education Portal
Teaches new investors
Problem: Angel investors lack tools
Data Dictionary
| Field | Type | Description | Example |
| module_id | INT | Module id | 40001 |
| title | VARCHAR | Module title | "Startup Valuation 101" |
| duration_mins | INT | Length | 45 |
| level | VARCHAR | Beginner/Intermediate | Beginner |
| content_url | VARCHAR | Resource link | /modules/val101 |
| usage_stats | JSON | Completions, scores | '{"completions":120}' |
Mock Dataset
| module_id | title | duration_mins | level |
| 40001 | Startup Valuation 101 | 45 | Beginner |
| 40002 | Due Diligence Essentials | 60 | Intermediate |
| 40003 | Portfolio Diversification | 30 | Beginner |
| 40004 | Term Sheet Key Terms | 50 | Intermediate |
41. AI Deal Room
Centralized negotiation room
Problem: Scattered processes
Data Dictionary
| Field | Type | Description | Example |
| dealroom_id | INT | Room id | 41001 |
| deal_id | INT | Deal linked | 4001 |
| documents | TEXT | Doc list | "term_v1.pdf" |
| status | VARCHAR | Negotiation status | Pending |
| participants | TEXT | List of users | "founder,lead_inv,legal" |
| last_activity | DATETIME | Last action | 2025-11-05 |
Mock Dataset
| dealroom_id | deal_id | status | participants |
| 41001 | 4001 | Approved | founder,alphaVent |
| 41002 | 4002 | Pending | founder,ecoFund |
| 41003 | 4003 | Rejected | founder,mediCap |
| 41004 | 4004 | In Review | founder,investClub |
42. Startup Culture Analyzer
Monitors startup culture
Problem: Investors ignore team health
Data Dictionary
| Field | Type | Description | Example |
| culture_id | INT | Culture record id | 42001 |
| startup_id | INT | Startup | 501 |
| trust_score | FLOAT | 0-100 | 82 |
| communication_score | FLOAT | 0-100 | 77 |
| innovation_score | FLOAT | 0-100 | 85 |
| leadership_score | FLOAT | 0-100 | 73 |
| worklife_balance_score | FLOAT | 0-100 | 80 |
| overall_culture_index | FLOAT | Composite | 79.4 |
| scan_date | DATE | Last assessment | 2025-11-03 |
Mock Dataset
| culture_id | startup_id | overall_culture_index | scan_date |
| 42001 | 501 | 79.4 | 2025-11-03 |
| 42002 | 502 | 68.2 | 2025-10-20 |
| 42003 | 503 | 85.1 | 2025-11-01 |
| 42004 | 504 | 55.0 | 2025-09-30 |
43. Blockchain Investment Ledger
Transparent recordkeeping
Problem: Trust issues in funds
Data Dictionary
| Field | Type | Description | Example |
| ledger_txn | VARCHAR | Blockchain txn id | 0xabc123 |
| deal_id | INT | Deal linked | 4001 |
| amount | FLOAT | Amount | 12.5 |
| timestamp | DATETIME | Txn time | 2025-11-05 |
| status | VARCHAR | Confirmed/Pending | Confirmed |
Mock Dataset
| ledger_txn | deal_id | amount | status |
| 0xabc123 | 4001 | 12.5 | Confirmed |
| 0xdef456 | 4002 | 4.2 | Confirmed |
| 0xghi789 | 4003 | 8.0 | Pending |
| 0xjkl012 | 4004 | 25.0 | Confirmed |
44. AI-Enabled Exit Strategy Recommender
Suggests exit strategies
Problem: Investors lack strategy
Data Dictionary
| Field | Type | Description | Example |
| exitrec_id | INT | Record id | 44001 |
| startup_id | INT | Startup | 101 |
| recommended_strategy | VARCHAR | M&A/IPO/Liquidation | M&A |
| rationale | TEXT | Why recommended | "Strong revenue growth" |
| estimated_value | FLOAT | Expected exit value | 58 |
Mock Dataset
| exitrec_id | startup_id | recommended_strategy | estimated_value |
| 44001 | 101 | M&A | 58 |
| 44002 | 102 | IPO | 120 |
| 44003 | 103 | Acquire | 30 |
| 44004 | 104 | Hold | 15 |
45. AI Fundraising Coach
Prepares founders for pitches
Problem: Poor pitch skills
Data Dictionary
| Field | Type | Description | Example |
| coach_id | INT | Session id | 45001 |
| founder_id | INT | Founder | 901 |
| session_score | FLOAT | Performance | 84 |
| feedback | TEXT | AI coaching notes | "Clear ask needed" |
| module | VARCHAR | Topic | Storytelling |
Mock Dataset
| coach_id | founder_id | session_score | module |
| 45001 | 901 | 84 | Storytelling |
| 45002 | 902 | 68 | Financials |
| 45003 | 903 | 91 | Pitch Demo |
| 45004 | 904 | 72 | Q&A |
46. AI LP/GP Transparency Dashboard
Tracks Limited Partner visibility
Problem: Opaque structures
Data Dictionary
| Field | Type | Description | Example |
| lp_id | INT | LP/GP record | 46001 |
| fund_id | INT | Fund | 9001 |
| visibility_index | FLOAT | Transparency score | 72 |
| reports_available | BOOL | Reports accessible | true |
| last_update | DATETIME | Timestamp | 2025-11-05 |
Mock Dataset
| lp_id | fund_id | visibility_index | reports_available |
| 46001 | 9001 | 72 | true |
| 46002 | 9002 | 55 | false |
| 46003 | 9003 | 81 | true |
| 46004 | 9004 | 65 | true |
47. AI-powered Crowdfunding Monitor
Tracks crowdfunding campaigns
Problem: Fraud & inefficiency
Data Dictionary
| Field | Type | Description | Example |
| cf_id | INT | Campaign id | 47001 |
| startup_id | INT | Startup | 701 |
| raised_amount | FLOAT | Amount | 25 |
| backers_count | INT | No. backers | 1200 |
| fraud_risk | FLOAT | 0-100 | 12 |
| status | VARCHAR | Active/Closed | Active |
Mock Dataset
| cf_id | startup_id | raised_amount | backers_count |
| 47001 | 701 | 25 | 1200 |
| 47002 | 702 | 3.2 | 200 |
| 47003 | 703 | 0.8 | 50 |
| 47004 | 704 | 12 | 600 |
48. AI Angel Network Health Index
Tracks health of angel groups
Problem: No visibility
Data Dictionary
| Field | Type | Description | Example |
| ang_idx_id | INT | Index record | 48001 |
| syndicate_id | INT | Syndicate | 801 |
| health_score | FLOAT | 0-100 | 78 |
| activity_level | INT | Deals per year | 12 |
| trust_index | FLOAT | Internal trust metric | 82 |
Mock Dataset
| ang_idx_id | syndicate_id | health_score | activity_level |
| 48001 | 801 | 78 | 12 |
| 48002 | 802 | 85 | 22 |
| 48003 | 803 | 64 | 6 |
| 48004 | 804 | 90 | 30 |
49. AI-driven Startup Knowledge Graph
Connects startups, investors, sectors
Problem: Disconnected data
Data Dictionary
| Field | Type | Description | Example |
| kg_node_id | INT | Node id | 49001 |
| node_type | VARCHAR | Startup/Investor/Patent | Startup |
| node_label | VARCHAR | Name | FinSync |
| relations | TEXT | Edges | "invests_in,cofounder" |
| last_indexed | DATETIME | Timestamp | 2025-11-05 |
Mock Dataset
| kg_node_id | node_type | node_label | relations |
| 49001 | Startup | FinSync | invested_by:501 |
| 49002 | Investor | BluePeak | invests_in:101,102 |
| 49003 | Patent | US12345 | owned_by:201 |
| 49004 | Founder | Riya Mehta | cofounder_of:101 |
50. AI MIS + Karma Dashboard
Unified dashboard linking PCOMBINATOR, Family Office, Angels
Problem: Multiple disconnected views
Data Dictionary
| Field | Type | Description | Example |
| dash_id | INT | Dashboard id | 50001 |
| module_refs | TEXT | Linked modules | "MIS,ESG,Watchlist" | |
| user_scope | VARCHAR | User or org | FamilyOfficeXYZ |
| last_sync | DATETIME | Sync timestamp | 2025-11-05 |
| summary_indices | JSON | Aggregated scores | '{"esg":73,"risk":34}' |
Mock Dataset
| dash_id | module_refs | user_scope | summary_indices |
| 50001 | MIS,ESG,Watchlist | FamilyOfficeXYZ | {"esg":73,"risk":34} |
| 50002 | DealFlow,Valuation | AngelNetworkA | {"deal_flow":82,"valuation_conf":88} |
| 50003 | Watchlist,ExitPred | FamilyOfficeB | {"watch_health":62,"exit_prob":0.28} |
| 50004 | GrantMap,SDG | GovUnit | {"sdg_coverage":0.78} |