AI Startup Suite — Data Dictionary & Sample Datasets (Projects 1–50)

1. Startup Deal Flow Analyzer

Automates screening of startup pitches

Problem: Manual screening wastes time

Data Dictionary

FieldTypeDescriptionExample
record_idINT PKUnique record id1001
startup_idINT FKLink to Startups.master101
pitch_doc_urlVARCHARLocation of pitch deck/docs/pitch_101.pdf
deal_flow_scoreFLOATAI score (0-100) of pitch quality82.5
key_topicsTEXTExtracted topics/keywords"fintech, payments"
expected_inputJSONInputs used (deck, demo link, metrics)'{"revenue":...}'
algorithmVARCHARAI model used"NLP Document Classifier"
statusENUMProcessed / Pending / ErrorProcessed
last_runDATETIMELast scoring time2025-11-05 10:12
remarksTEXTAuditor notes"Good TAM evidence"

Mock Dataset

record_idstartup_iddeal_flow_scorekey_topicsalgorithmstatus
100110182.5fintech;payments;KYCNLP-Doc-1Processed
100210267.2agritech;supply-chainNLP-Doc-1Processed
100310345.8edtech;retentionNLP-Doc-1Processed
100410490.1cleantech;solarNLP-Doc-1Processed

2. Investor–Startup Matchmaking

Matches startups with right investors

Problem: Misaligned funding opportunities

Data Dictionary

FieldTypeDescriptionExample
record_idINT PKUnique match id2001
startup_idINTStartup101
investor_idINTInvestor501
match_scoreFLOATCompatibility score 0-10087.3
stage_fitVARCHARSeed/Series A/etc.Series A
sector_overlapFLOATSector similarity 0-10.84
algorithmVARCHARRecommender model"MatrixFactor"
notesTEXTAdvisor remarks"Lead interest"

Mock Dataset

record_idstartup_idinvestor_idmatch_scorestage_fit
200110150187.3Series A
200210250278.0Seed
200310350365.5Pre-Seed
200410450492.1Series B

3. AI Due Diligence Assistant

Automates startup background checks

Problem: Tedious manual due diligence

Data Dictionary

FieldTypeDescriptionExample
record_idINTCheck id3001
startup_idINTTarget startup101
db_checksJSONResults from registry, litigation, tax'{"litigation":false}'
score_completenessFLOATData completeness 0-10092.0
fraud_flagsINTNumber of flags0
report_urlVARCHARDD report/reports/dd_3001.pdf
analystVARCHARHuman reviewer"R. Sharma"

Mock Dataset

record_idstartup_idscore_completenessfraud_flagsreport_url
300110192.00/reports/dd_3001.pdf
300210374.51/reports/dd_3002.pdf
300310488.90/reports/dd_3003.pdf
300410555.23/reports/dd_3004.pdf

4. Family Office Impact Tracker

Tracks investments & social impact

Problem: No structured way to measure impact

Data Dictionary

FieldTypeDescriptionExample
record_idINTImpact record id4001
startup_idINTRecipient startup101
investor_idINTFamily office id701
sdg_alignedVARCHARPrimary SDG tagSDG7
impact_scoreFLOATImpact metric 0-10075.4
measurement_periodVARCHARQuarter/YearQ3-2025
evidence_docsTEXTLinks to evidence"/evidence/..."

Mock Dataset

record_idstartup_idinvestor_idsdg_alignedimpact_score
4001110701SDG775.4
4002115702SDG382.0
4003120703SDG664.5
4004101701SDG971.2

5. Angel Network Dashboard

Unified view of deals & returns

Problem: Fragmented systems

Data Dictionary

FieldTypeDescriptionExample
dashboard_idINTDashboard record5001
syndicate_idINTAngel group801
deals_countINTTotal deals18
portfolio_returnFLOATIRR or ROI24.5
exposure_sectorTEXTSector breakdown"fintech:40%,health:30%"
last_refreshDATETIMERefresh timestamp2025-11-04 09:22

Mock Dataset

dashboard_idsyndicate_iddeals_countportfolio_return
50018011824.5
50028022218.2
50038031230.1
5004804912.0

6. Startup Valuation Predictor

Predicts fair valuation of startups

Problem: Over/undervaluation in funding

Data Dictionary

FieldTypeDescriptionExample
valuation_idINTValuation record6001
startup_idINTStartup101
predicted_valuationFLOATPredicted valuation (₹ Cr)18.5
methodVARCHARModel/approach"Regression-ensemble"
confidenceFLOATConfidence %88.6
features_usedTEXTFeatures"rev, growth, churn"
last_runDATETIMERun timestamp2025-11-03 11:00

Mock Dataset

valuation_idstartup_idpredicted_valuationconfidence
600110118.588.6
60021027.276.4
60031033.162.1
600410445.092.0

7. Fraud Detection Engine

Detects fake startups & scams

Problem: Fake data in funding

Data Dictionary

FieldTypeDescriptionExample
fraud_idINTFraud event id7001
startup_idINTStartup analyzed110
anomaly_scoreFLOAT0-100 anomaly score92.0
graph_flagsINTNumber of suspicious links in graph3
evidenceTEXTSummary of anomalies"revenue mismatch"
detected_byVARCHARModel name"PyTorch-AnomV1"
actionVARCHARSuggested action"Escalate to DD"

Mock Dataset

fraud_idstartup_idanomaly_scoregraph_flagsaction
7001201924Escalate
7002202651Monitor
7003203280No action
7004204802Deep Audit

8. AI-powered Term Sheet Generator

Auto-generates legal investment docs

Problem: Legal delays

Data Dictionary

FieldTypeDescriptionExample
ts_idINTTerm sheet id8001
deal_idINTLinked deal4001
ts_versionINTVersion number1
clausesTEXTGenerated clauses"vesting:4yr..."
generated_byVARCHARLLM name"GPT-TermGen-1"
signed_statusENUMPending/Partially/CompletePending

Mock Dataset

ts_iddeal_idts_versiongenerated_bysigned_status
800140011GPT-TermGen-1Pending
800240021GPT-TermGen-1Complete
800340032GPT-TermGen-2Pending
800440041GPT-TermGen-1Partially

9. Investor Portfolio Optimizer

Recommends portfolio balancing

Problem: Poor diversification

Data Dictionary

FieldTypeDescriptionExample
opt_idINTOptimizer run id9001
investor_idINTInvestor501
allocation_suggestionJSONSuggested allocations by startup'{"101":45,"102":30}'
expected_returnFLOATProjected ROI%18.2
risk_toleranceVARCHARLow/Med/HighMedium
solverVARCHARAlgorithm used"OR-Tools-LP"

Mock Dataset

opt_idinvestor_idallocation_suggestionexpected_return
9001501{"101":45,"102":30,"103":25}18.2
9002502{"104":60,"105":40}14.5
9003503{"106":20,"107":80}22.1
9004504{"108":50,"109":50}16.0

10. AI News Sentiment Tracker

Tracks market & startup news

Problem: Noise in news data

Data Dictionary

FieldTypeDescriptionExample
news_idINTArticle id10001
startup_idINTRelated startup101
sourceVARCHARNews sourceReuters
publish_dateDATEArticle date2025-11-02
sentiment_scoreFLOAT-1 to +10.45
topicsTEXTExtracted topics"funding,partnership"
summaryTEXTAuto summary"Raised $5M..."

Mock Dataset

news_idstartup_idsourcesentiment_scoresummary
10001101Reuters0.45Raised $5M seed
10002102TechCrunch-0.12Layoffs announced
10003103EconomicTimes0.25New partnership
10004104LocalNews0.00Neutral coverage

11. MIS Deal Flow Heatmap

Geographic startup deal mapping

Problem: Lack of visibility by region

Data Dictionary

FieldTypeDescriptionExample
heatmap_idINTRecord id11001
regionVARCHARRegion nameMumbai
deals_countINTNo. deals12
avg_deal_sizeFLOATAvg amount (₹ Cr)3.2
geo_coordsVARCHARlat,long"18.96,72.82"
last_updateDATETIMERefresh2025-11-05

Mock Dataset

heatmap_idregiondeals_countavg_deal_size
11001Mumbai123.2
11002Bengaluru225.1
11003Delhi NCR184.0
11004Chennai61.2

12. Social Impact Scorecard

Measures startup’s ESG alignment

Problem: No quantifiable metrics

Data Dictionary

FieldTypeDescriptionExample
esg_idINTESG score id12001
startup_idINTStartup101
environment_scoreFLOAT0-10078.2
social_scoreFLOAT0-10069.4
governance_scoreFLOAT0-10072.0
composite_esgFLOATWeighted73.2
evidence_docsTEXTProof"/evidence/esg_12001.pdf"

Mock Dataset

esg_idstartup_idcomposite_esgevidence_docs
1200110173.2/evidence/esg_12001.pdf
1200211581.0/evidence/esg_12002.pdf
1200313055.1/evidence/esg_12003.pdf
1200414066.4/evidence/esg_12004.pdf

13. Founders Mental Health Monitor

AI-based well-being support

Problem: Founder burnout

Data Dictionary

FieldTypeDescriptionExample
mh_idINTRecord id13001
founder_idINTFounder901
stress_scoreFLOAT0-10072.5
mood_trendTEXTWeekly mood summary"anxiety trending"
interventionVARCHARSuggested actionCoaching
last_checkinDATELast assessment2025-11-01

Mock Dataset

mh_idfounder_idstress_scoreintervention
1300190172.5Coaching
1300290245.2Wellness plan
1300390328.1Monitoring
1300490485.4Immediate help

14. Startup Exit Predictor

Predicts likelihood of startup exits

Problem: Investors unsure of ROI

Data Dictionary

FieldTypeDescriptionExample
exit_idINTPrediction id14001
startup_idINTStartup101
exit_probFLOAT0-1 probability0.28
predicted_horizon_monthsINTMonths to exit36
model_usedVARCHARSurvival/MLSurvival-Prophet
confidenceFLOATConfidence %78.2

Mock Dataset

exit_idstartup_idexit_probpredicted_horizon_months
140011010.2836
140021020.1260
140031030.4518
140041040.05120

15. AI Market Sizing Tool

Automates TAM, SAM, SOM calculations

Problem: Market sizing guesswork

Data Dictionary

FieldTypeDescriptionExample
market_idINTRecord id15001
sectorVARCHARSectorFintech
TAMFLOATTotal addressable market12000
SAMFLOATServiceable addressable3200
SOMFLOATShare of market300
methodologyTEXTSources & assumptions"Gov data, analyst"

Mock Dataset

market_idsectorTAMSAMSOM
15001Fintech120003200300
15002HealthTech80001500120
15003EduTech500090070
15004CleanTech200004500500

16. Family Office Co-investment Finder

Identifies co-investment opportunities

Problem: Families invest in silos

Data Dictionary

FieldTypeDescriptionExample
match_idINTCo-invest match id16001
family_office_idINTFamily office701
potential_partner_idINTOther investor702
overlap_scoreFLOAT0-100 fit score82.1
preferred_sectorsTEXTSector match"agritech;cleantech"

Mock Dataset

match_idfamily_office_idpotential_partner_idoverlap_score
1600170170282.1
1600270370471.5
1600370570665.0
1600470770888.2

17. AI Patent Scanner

Validates startup IP

Problem: Duplicate/invalid patents

Data Dictionary

FieldTypeDescriptionExample
patent_idINTPatent record17001
startup_idINTOwner101
patent_textTEXTClaim text"An apparatus..."
similarity_scoreFLOATSimilarity to existing patents0.82
statusENUMUnique/Duplicate/ReviewReview
matched_patentsTEXTMatches found"US12345;EP6789"

Mock Dataset

patent_idstartup_idsimilarity_scorestatus
170012010.12Unique
170022020.78Review
170032030.95Duplicate
170042040.34Unique

18. Startup Risk Heatmap

Dynamic risk analysis

Problem: Risk often hidden

Data Dictionary

FieldTypeDescriptionExample
riskmap_idINTRecord id18001
startup_idINTStartup101
financial_riskFLOAT0-10034
operational_riskFLOAT0-10045
composite_riskFLOATWeighted index38.5
heatmap_regionVARCHARRegionWest

Mock Dataset

riskmap_idstartup_idcomposite_riskheatmap_region
1800110138.5West
1800210255.2South
1800310322.1North
1800410472.4East

19. AI Fund Allocation Planner

Optimizes fund allocation

Problem: Poor allocation strategies

Data Dictionary

FieldTypeDescriptionExample
plan_idINTAllocation plan id19001
investor_idINTInvestor501
total_fundFLOATTotal fund (₹ Lakhs)20000
allocationsJSONAllocations per startup'{"101":4500}'
objectiveVARCHARMax ROI / Min RiskMax ROI
solverVARCHAROR-Tools / customOR-Tools

Mock Dataset

plan_idinvestor_idtotal_fundallocations
1900150120000{"101":4500,"102":5500,"103":10000}
1900250210000{"104":4000,"105":6000}
190035035000{"106":2500,"107":2500}
1900450415000{"108":8000,"109":7000}

20. Karmic Startup Karma Tracker

Tracks good/bad impact (PRUTL)

Problem: Only profits tracked

Data Dictionary

FieldTypeDescriptionExample
karma_idINTKarma record id20001
startup_idINTStartup101
positive_soulFLOATPositive soul metric (0-100)55
negative_soulFLOATNegative soul metric12
materialism_scoreFLOATMaterialism composite40
karma_indexFLOATComposite karma score63
notesTEXTEthical remarks"Supports recycling"

Mock Dataset

karma_idstartup_idkarma_indexnotes
2000110163Supports recycling
2000210242High materialism
2000310375Community programs
2000410430Profit-first

21. Cyber Risk Monitor for Startups

Tracks startup’s cyber posture

Problem: Investors blind to cyber risk

Data Dictionary

FieldTypeDescriptionExample
cyber_idINTCyber record id21001
startup_idINTStartup201
threat_scoreFLOAT0-10056
vuln_countINTNo. vulnerabilities12
compliance_iso27001BOOLISO 27001 certifiedtrue
recommendationTEXTSuggested actions"Enable MFA"

Mock Dataset

cyber_idstartup_idthreat_scorevuln_count
210012015612
210022028224
21003203283
21004204417

22. Startup Hiring Analyzer

Predicts hiring needs & gaps

Problem: Mis-hiring by startups

Data Dictionary

FieldTypeDescriptionExample
hire_idINTRecord id22001
startup_idINTStartup301
current_headcountINTEmployees23
predicted_optimalINTAI recommended headcount28
gapINTDifference5
attrition_riskFLOAT% attrition risk12.4
recommendationTEXTHiring plan"Hire 2 DevOps"

Mock Dataset

hire_idstartup_idcurrent_headcountpredicted_optimalgap
2200130123285
2200230212120
220033038146
22004304550

23. Investor Bias Detector

Detects gender/regional bias

Problem: Biased funding

Data Dictionary

FieldTypeDescriptionExample
bias_idINTBias record id23001
investor_idINTInvestor501
metricVARCHARGender/Region/SectorGender
bias_scoreFLOAT0-100 fairness index46
explanationTEXTWhy bias flagged"Favors metro founders"
mitigationTEXTRecommended fix"Blind evaluation"

Mock Dataset

bias_idinvestor_idmetricbias_score
23001501Gender46
23002502Region62
23003503Sector84
23004504Gender71

24. AI Pitch Voice Analyzer

Analyzes founder pitch tone

Problem: Subjective judging

Data Dictionary

FieldTypeDescriptionExample
pitch_idINTRecord id24001
founder_idINTFounder901
avg_pitch_hzFLOATAverage pitch215
confidence_scoreFLOAT0-10089
emotionVARCHARDetected emotionCalm
fairness_scoreFLOATBias adjusted score92

Mock Dataset

pitch_idfounder_idavg_pitch_hzconfidence_scorefairness_score
240019012158992
240029021407668
240039032305952
240049041257264

25. AI Startup Growth Path Simulator

Simulates future growth scenarios

Problem: No clarity of projections

Data Dictionary

FieldTypeDescriptionExample
sim_idINTSimulation id25001
startup_idINTStartup101
scenarioVARCHARBest/Base/WorstBase
projected_revenue_3yrFLOAT₹ Cr27.7
projected_revenue_5yrFLOAT₹ Cr58.1
confidenceFLOAT%89

Mock Dataset

sim_idstartup_idscenarioprojected_revenue_3yrconfidence
25001101Base27.789
25002102Best30.485
25003103Worst15.174
25004104Base14.269

26. AI-Powered Startup Watchlist

Flags startups needing attention

Problem: Post-investment neglect

Data Dictionary

FieldTypeDescriptionExample
watch_idINTWatchlist id26001
startup_idINTStartup201
anomaly_scoreFLOAT0-10.83
health_indexFLOAT%62
risk_levelVARCHARHigh/Medium/LowHigh
justificationTEXTAI explanationRapid cash burn

Mock Dataset

watch_idstartup_idanomaly_scorehealth_indexrisk_level
260012010.8362High
260022020.5578Medium
260032030.2490Low
260042040.4170Medium

27. SDG Startup Alignment Dashboard

Classifies startups to SDGs

Problem: ESG ignored in funding

Data Dictionary

FieldTypeDescriptionExample
sdg_idINTRecord id27001
startup_idINTStartup110
primary_sdgVARCHARMain SDGSDG7
alignment_scoreFLOAT0-10.91
esg_impact_indexFLOAT%88
notesTEXTAssessment details"Solar microgrids"

Mock Dataset

sdg_idstartup_idprimary_sdgalignment_scoreesg_impact_index
27001110SDG70.9188
27002115SDG30.7479
27003120SDG40.6472
27004130SDG60.4255

28. AI Competitor Landscape Mapper

Maps startup vs competitors

Problem: Founders lack data

Data Dictionary

FieldTypeDescriptionExample
comp_idINTRecord id28001
startup_idINTStartup101
competitorVARCHARCompetitor namePayEase
overlap_pctFLOATMarket overlap %80
product_similarityVARCHARHigh/Medium/LowHigh
ai_insightTEXTRecommendation"Focus B2B"

Mock Dataset

comp_idstartup_idcompetitoroverlap_pctai_insight
28001101PayEase80Focus B2B micro-payments
28002102FarmNet65Introduce IoT sensors
28003103HealthNext50Enhance explainability
28004104GreenHive70Target EU grants

29. Startup Gender Diversity Analyzer

Measures diversity in teams

Problem: Diversity under-reported

Data Dictionary

FieldTypeDescriptionExample
div_idINTRecord id29001
startup_idINTStartup120
total_employeesINTTotal120
male_pctFLOAT% male70
female_pctFLOAT% female28
nonbinary_pctFLOAT%2
diversity_scoreFLOAT0-106.4

Mock Dataset

div_idstartup_idmale_pctfemale_pctdiversity_score
2900112070286.4
2900212160387.9
2900312280195.2
2900412355438.8

30. Investor Relations Chatbot

Handles FAQs for investors

Problem: Manual queries

Data Dictionary

FieldTypeDescriptionExample
faq_idINTFAQ record30001
questionTEXTInvestor question"Valuation?"
answerTEXTAI response"$15M as of Q3 2025"
categoryVARCHARFinancial/Resources/etcFinancial
usage_countINTTimes asked123
last_updatedDATETIMEUpdate timestamp2025-11-05

Mock Dataset

faq_idquestionanswercategory
30001What is current valuation?Our latest valuation is $15M.Financial
30002Who are lead investors?BluePeak Ventures.Funding
30003View pitch deck?Investor Portal > DocumentsResources
30004Next update date?Dec 15, 2025Scheduling

31. Startup Carbon Footprint Tracker

Tracks emissions

Problem: No carbon accounting

Data Dictionary

FieldTypeDescriptionExample
carbon_idINTRecord id31001
siteVARCHARLocationOffice HQ
energy_kwhFLOATEnergy used320
waste_kgFLOATWaste18
vehicle_co2FLOATVehicle CO2 (kg)56
total_co2FLOATTotal CO2 (kg)394
statusVARCHAROptimal/Moderate/HighAbove Target

Mock Dataset

carbon_idsiteenergy_kwhtotal_co2status
31001Office HQ320394Above Target
31002Manufacturing12401512High
31003Remote Office180197Optimal
31004R&D Center480577Moderate

32. AI Startup Scalability Analyzer

Measures ability to scale

Problem: Investors miss signals

Data Dictionary

FieldTypeDescriptionExample
scal_idINTRecord id32001
startup_idINTStartup401
current_usersINTUser base15000
monthly_growth_pctFLOATMonthly growth %22
automation_levelFLOAT% automation87
ai_scalability_scoreFLOAT0-10091
statusVARCHARScale classHighly Scalable

Mock Dataset

scal_idstartup_idmonthly_growth_pctai_scalability_scorestatus
320014012291Highly Scalable
320024021274Moderate
32003403659Needs Optimization
320044042896Excellent

33. AI-Powered MIS Reporting

Auto-generates MIS reports

Problem: Manual report prep

Data Dictionary

FieldTypeDescriptionExample
mis_idINTMIS record id33001
startup_idINTStartup101
revenue_lacsFLOATRevenue120
expense_lacsFLOATExpenses80
profit_pctFLOATProfit %33
ai_summaryTEXTAuto-generated summary"Strong Q3 growth"
last_generatedDATETIMETimestamp2025-11-05

Mock Dataset

mis_idstartup_idrevenue_lacsprofit_pctai_summary
3300110112033Strong Q3 growth
330021029526Stable performance
3300310360-8Operational losses
3300410420040Outstanding quarter

34. Investor Deal Syndication Manager

Helps manage syndicates

Problem: Coordination is messy

Data Dictionary

FieldTypeDescriptionExample
synd_idINTSyndicate id34001
lead_investorINTLead investor id801
co_investorsTEXTList of co-investors"802,803"
deals_managedINTNo. deals18
avg_turnaround_daysINTAvg days9
workflow_indexFLOATEfficiency score91

Mock Dataset

synd_idlead_investorco_investorsdeals_managed
34001801802,803,80418
34002805806,80722
3400380880915
34004810811,81212

35. AI Liquidity Risk Model

Predicts liquidity crunch

Problem: Investors blindsided

Data Dictionary

FieldTypeDescriptionExample
liq_idINTRecord id35001
investor_idINTInvestor501
predicted_shortfallFLOATAmount (₹ Lacs)500
horizon_monthsINTMonths6
confidenceFLOAT%82
mitigationTEXTSuggested actions"Increase reserve"

Mock Dataset

liq_idinvestor_idpredicted_shortfallhorizon_months
350015015006
3500250212003
3500350320012
350045045018

36. Startup Financial Integrity Checker

Validates accounting integrity

Problem: Fraudulent accounts

Data Dictionary

FieldTypeDescriptionExample
int_idINTIntegrity id36001
startup_idINTStartup201
cashflow_match_pctFLOAT% match97
anomaly_scoreFLOAT0-10048
integrity_indexFLOAT0-10088
remarksTEXTDetails"Round-off manipulations"

Mock Dataset

int_idstartup_idcashflow_match_pctanomaly_score
36001201978
360022028923
360032037252
360042049512

37. AI Social Media Perception Tracker

Monitors startup buzz

Problem: No real-time tracking

Data Dictionary

FieldTypeDescriptionExample
sm_idINTRecord id37001
startup_idINTStartup101
mentions_countINTMentions in window320
avg_sentimentFLOAT-1..+10.12
top_sourcesTEXTSource list"Twitter,LinkedIn"
trend_flagVARCHARUp/Down/StableUp

Mock Dataset

sm_idstartup_idmentions_countavg_sentiment
370011013200.12
37002102150-0.20
37003103780.45
37004104120.00

38. Early Warning System

Flags failing startups early

Problem: Investors shocked

Data Dictionary

FieldTypeDescriptionExample
ews_idINTEWS record id38001
startup_idINTStartup201
risk_scoreFLOAT0-10070
flag_reasonTEXTTrigger reason"cash burn spike"
alert_levelVARCHARLow/Med/HighHigh
notifiedBOOLInvestors notifiedtrue

Mock Dataset

ews_idstartup_idrisk_scorealert_level
3800120170High
3800220235Medium
3800320322Low
3800420455Medium

39. AI Grant Mapping Tool

Maps startups to grants

Problem: Startups miss govt. grants

Data Dictionary

FieldTypeDescriptionExample
grant_map_idINTRecord id39001
startup_idINTStartup101
grant_idINTGrant5001
match_scoreFLOAT0-10.87
sdg_relevanceVARCHARSDG tagSDG7
apply_urlVARCHARApplication linkhttps://gov/grant/5001

Mock Dataset

grant_map_idstartup_idgrant_idmatch_score
3900110150010.87
3900210250020.56
3900310350030.93
3900410450040.42

40. AI Investor Education Portal

Teaches new investors

Problem: Angel investors lack tools

Data Dictionary

FieldTypeDescriptionExample
module_idINTModule id40001
titleVARCHARModule title"Startup Valuation 101"
duration_minsINTLength45
levelVARCHARBeginner/IntermediateBeginner
content_urlVARCHARResource link/modules/val101
usage_statsJSONCompletions, scores'{"completions":120}'

Mock Dataset

module_idtitleduration_minslevel
40001Startup Valuation 10145Beginner
40002Due Diligence Essentials60Intermediate
40003Portfolio Diversification30Beginner
40004Term Sheet Key Terms50Intermediate

41. AI Deal Room

Centralized negotiation room

Problem: Scattered processes

Data Dictionary

FieldTypeDescriptionExample
dealroom_idINTRoom id41001
deal_idINTDeal linked4001
documentsTEXTDoc list"term_v1.pdf"
statusVARCHARNegotiation statusPending
participantsTEXTList of users"founder,lead_inv,legal"
last_activityDATETIMELast action2025-11-05

Mock Dataset

dealroom_iddeal_idstatusparticipants
410014001Approvedfounder,alphaVent
410024002Pendingfounder,ecoFund
410034003Rejectedfounder,mediCap
410044004In Reviewfounder,investClub

42. Startup Culture Analyzer

Monitors startup culture

Problem: Investors ignore team health

Data Dictionary

FieldTypeDescriptionExample
culture_idINTCulture record id42001
startup_idINTStartup501
trust_scoreFLOAT0-10082
communication_scoreFLOAT0-10077
innovation_scoreFLOAT0-10085
leadership_scoreFLOAT0-10073
worklife_balance_scoreFLOAT0-10080
overall_culture_indexFLOATComposite79.4
scan_dateDATELast assessment2025-11-03

Mock Dataset

culture_idstartup_idoverall_culture_indexscan_date
4200150179.42025-11-03
4200250268.22025-10-20
4200350385.12025-11-01
4200450455.02025-09-30

43. Blockchain Investment Ledger

Transparent recordkeeping

Problem: Trust issues in funds

Data Dictionary

FieldTypeDescriptionExample
ledger_txnVARCHARBlockchain txn id0xabc123
deal_idINTDeal linked4001
amountFLOATAmount12.5
timestampDATETIMETxn time2025-11-05
statusVARCHARConfirmed/PendingConfirmed

Mock Dataset

ledger_txndeal_idamountstatus
0xabc123400112.5Confirmed
0xdef45640024.2Confirmed
0xghi78940038.0Pending
0xjkl012400425.0Confirmed

44. AI-Enabled Exit Strategy Recommender

Suggests exit strategies

Problem: Investors lack strategy

Data Dictionary

FieldTypeDescriptionExample
exitrec_idINTRecord id44001
startup_idINTStartup101
recommended_strategyVARCHARM&A/IPO/LiquidationM&A
rationaleTEXTWhy recommended"Strong revenue growth"
estimated_valueFLOATExpected exit value58

Mock Dataset

exitrec_idstartup_idrecommended_strategyestimated_value
44001101M&A58
44002102IPO120
44003103Acquire30
44004104Hold15

45. AI Fundraising Coach

Prepares founders for pitches

Problem: Poor pitch skills

Data Dictionary

FieldTypeDescriptionExample
coach_idINTSession id45001
founder_idINTFounder901
session_scoreFLOATPerformance84
feedbackTEXTAI coaching notes"Clear ask needed"
moduleVARCHARTopicStorytelling

Mock Dataset

coach_idfounder_idsession_scoremodule
4500190184Storytelling
4500290268Financials
4500390391Pitch Demo
4500490472Q&A

46. AI LP/GP Transparency Dashboard

Tracks Limited Partner visibility

Problem: Opaque structures

Data Dictionary

FieldTypeDescriptionExample
lp_idINTLP/GP record46001
fund_idINTFund9001
visibility_indexFLOATTransparency score72
reports_availableBOOLReports accessibletrue
last_updateDATETIMETimestamp2025-11-05

Mock Dataset

lp_idfund_idvisibility_indexreports_available
46001900172true
46002900255false
46003900381true
46004900465true

47. AI-powered Crowdfunding Monitor

Tracks crowdfunding campaigns

Problem: Fraud & inefficiency

Data Dictionary

FieldTypeDescriptionExample
cf_idINTCampaign id47001
startup_idINTStartup701
raised_amountFLOATAmount25
backers_countINTNo. backers1200
fraud_riskFLOAT0-10012
statusVARCHARActive/ClosedActive

Mock Dataset

cf_idstartup_idraised_amountbackers_count
47001701251200
470027023.2200
470037030.850
4700470412600

48. AI Angel Network Health Index

Tracks health of angel groups

Problem: No visibility

Data Dictionary

FieldTypeDescriptionExample
ang_idx_idINTIndex record48001
syndicate_idINTSyndicate801
health_scoreFLOAT0-10078
activity_levelINTDeals per year12
trust_indexFLOATInternal trust metric82

Mock Dataset

ang_idx_idsyndicate_idhealth_scoreactivity_level
480018017812
480028028522
48003803646
480048049030

49. AI-driven Startup Knowledge Graph

Connects startups, investors, sectors

Problem: Disconnected data

Data Dictionary

FieldTypeDescriptionExample
kg_node_idINTNode id49001
node_typeVARCHARStartup/Investor/PatentStartup
node_labelVARCHARNameFinSync
relationsTEXTEdges"invests_in,cofounder"
last_indexedDATETIMETimestamp2025-11-05

Mock Dataset

kg_node_idnode_typenode_labelrelations
49001StartupFinSyncinvested_by:501
49002InvestorBluePeakinvests_in:101,102
49003PatentUS12345owned_by:201
49004FounderRiya Mehtacofounder_of:101

50. AI MIS + Karma Dashboard

Unified dashboard linking PCOMBINATOR, Family Office, Angels

Problem: Multiple disconnected views

Data Dictionary

FieldTypeDescriptionExample
dash_idINTDashboard id50001
module_refsTEXTLinked modules"MIS,ESG,Watchlist"
user_scopeVARCHARUser or orgFamilyOfficeXYZ
last_syncDATETIMESync timestamp2025-11-05
summary_indicesJSONAggregated scores'{"esg":73,"risk":34}'

Mock Dataset

dash_idmodule_refsuser_scopesummary_indices
50001MIS,ESG,WatchlistFamilyOfficeXYZ{"esg":73,"risk":34}
50002DealFlow,ValuationAngelNetworkA{"deal_flow":82,"valuation_conf":88}
50003Watchlist,ExitPredFamilyOfficeB{"watch_health":62,"exit_prob":0.28}
50004GrantMap,SDGGovUnit{"sdg_coverage":0.78}